基因组工程正在进行前所未有的发展,现在已广泛可用。为确保负责任的生物技术创新并减少滥用工程DNA序列,为识别工程型质粒的起源实验室来说是至关重要的。基因工程归因(GEA),制定序列实验室协会的能力将支持这一过程中的法医专家。在这里,我们提出了一种基于度量学习的方法,该方法将最可能的原产实验室排名,同时为质粒序列和实验室产生嵌入。这些嵌入物可用于执行各种下游任务,例如聚类DNA序列和实验室,以及在机器学习模型中使用它们作为特征。我们的方法采用了循环转移增强方法,能够在前10个预测中正确地将原产于原产的90亿美元的时间排列 - 优于所有最新的最先进的方法。我们还证明我们可以使用只需10次\%$ 10 \%$ of序列进行几次拍摄学习并获得76±10美元的准确性。这意味着,我们仅使用第十个数据表达先前的CNN方法。我们还证明我们能够在特定实验室中提取质粒序列中的关键签名,允许对模型的产出进行可解释的检查。
translated by 谷歌翻译
急诊部门(EDS)是葡萄牙国家卫生服务局的基本要素,可作为具有多样化和非常严重医疗问题的用户的切入点。由于ED的固有特征;预测使用服务的患者数量特别具有挑战性。富裕和医疗专业人员人数之间的不匹配可能会导致提供的服务质量下降,并造成对整个医院产生影响的问题,并从其他部门征用医疗保健工作者以及推迟手术。 。 ED人满为患的部分是由非紧急患者驱动的,尽管没有医疗紧急情况,但诉诸于紧急服务,几乎占每日患者总数的一半。本文描述了一种新颖的深度学习体系结构,即时间融合变压器,该结构使用日历和时间序列协变量来预测预测间隔和4周期间的点预测。我们得出的结论是,可以预测葡萄牙健康区域(HRA)(HRA)的平均绝对百分比误差(MAPE)和均方根误差(RMSE)为84.4102人/天的平均绝对百分比误差(MAPE)。本文显示了支持使用静态和时间序列协变量的多元方法的经验证据,同时超越了文献中常见的其他模型。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
最近的证据表明,SARS-COV-2是2020年导致全球大流行病的病毒,主要经由室内环境中的空气机气溶胶传播。在评估和控制建筑物的室内空气质量(IAQ)时,这需要新颖的策略。 IAQ通常可以通过通风和/或政策来控制以调节人建筑物相互作用。然而,在建筑物中,占用者使用其他方式使用房间,可能并不明显哪种措施或对措施的组合导致成本和能源有效的解决方案,确保整个建筑物的良好IAQ。因此,在本文中,我们介绍了一种基于代理的模拟器,亚拟合,旨在帮助通过估计足够的房间尺寸,通风参数和测试政策的效果来帮助创造新的或适应现有建筑物,同时考虑到IAQ的结果复杂的人建筑物相互作用模式。最近公开的气溶胶模型适于计算每个房间中的时间依赖性二氧化碳($ CO_2 $)和病毒量子浓度,每天吸入$ CO_2 $和病毒量子,作为生理反应的衡量标准。由于其模块化架构,Archabm对气溶胶模型和建筑布局具有灵活性,这允许实现进一步的模型,任何数字和房间,代理和操作的行动,反映人建筑物交互模式。我们提供了一个基于我们研究中心采用的真正平面计划和工作时间表的用例。本研究表明,先进的仿真工具如何有助于改善建筑物的IAQ,从而确保健康的室内环境。
translated by 谷歌翻译
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译